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Chapter 2

Lexical Freedom and Large Categories*
Edward L. Keenan

SUMMARY

Grammatical categories of English expressions are shown to differ with
regard to the freedom we have in semantically interpreting their lexical (=
syntactically simplest) expressions. Section 1 reviews the categories of ex-
pression we consider. Section 2 empirically supports that certain of these
categories are lexically free, a notion we formally define, in the sense that
anything which is denotable by a complex expression in the category is
available as a denotation for lexical expressions in the category. Other
categories are shown to be not lexically free. Thus for those categories the
interpretation of lexical expressions is inherently constrained compared to
the interpretation of the full class of expressions in the category.-

In section 3 we establish the principle generalization of this paper: small
categories are lexically free, large ones are not, where the size of a category
is formally defined in terms of the full range of extensional distinctions ex-
pressible by expressions in the category. In terms of this generalization we
suggest an explanation for the distribution of lexical freedom established in
section 2.

We conclude with a generalization of the notion lexical freedom and pre-
sent some partial results, leaving certain problems open.

1. CATEGORIES CONSIDERED

Below we present, with suitable mnemonics, the categories of expression we
consider. We shall assume that these categories of expression form part of
a formal languae L, the precise nature of which is unimportant here. The
language given in K&F (Keenan & Faltz, 1985) will do, as will the languages
given in Montague (1970 and 1973) with trivial modifications.
"~ CN or (zero place) common noun phrase: man, tall man,

man who Sue loves

* At several points in this paper [ have benefitted from discussion and comment from Johan
van Benthem, Peter van Emde Boas, Dick de Jongh, and Larry Moss. In addition I wish to
thank the Max-Planck Institute fiir Psycholinguistik, Nijmegen for having supported the
research herein.
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NP or full noun phrase: John, every man, John and no other student,
more students than teachers

CNq or one place (transitive) common noun phrase: friend (of), brother
fof}). They combine with NP’s to form CN’s: friend of the President,
brother of some senator.

AP or zero place adjective phrase: female, tall, who Sue loves

AP or one place (transitive) adjective phrase: fond (of), jealous (of).
They combine with NP’s to form AP’s: fond of both John and Mary,
as in Every student fond of both John and Mary came to their aid.

Detx or k-place determiners: they combine with k CN’s to form an NP,
Some Det; ’s (or just Dets for short) are: every, no student’s, (as in no
Student’s cat), more male than female (as in more male than female
Students [passed the exam]).

Some Det, s are: more . .. than ..., exactlyasmany ... as .. ., as in
more students than teachers [attended the meeting].

Pk or k-place predicates; We identify Py with S (Sentence).

Some Py’s are: walk, walk but not talk, walk slowly in the garden.
Some P,’s are: hug, kiss, hug and kiss. Some P3’s are: show, give,
show and give. We do not consider L to have Py ’s for k = 4.

PM or predicate modifier: here, slowly, in the garden. PM’s combine
with Py ’s to form Py ’s, k = 1. Some also combine with CNy’s to form
CNg’s.

Prep or transitive PM’s: in, at, on. They form PM’s from NP’s.

Remarks on the syntax

(i) We shall not treat PM’s and Prepositions directly, though we shall
treat CNi’s and Py’s formed from them. We shall not treat Dety ’s for
k > 2. The extensive list of Det;’s we ¢onsider is given in K&S (Keenan
& Stavi, 1981 and to appear). The class of Det,’s considered is given
in K&M (Keenan & Moss, 1984). In addition, certain subcategories of
the categories noted above will be treated.

(i) For C any of the categories considered, we write Ciex for the set of syn-
tactically simplest expressions of category C. Elements of Ciey will be
referred to as lexical expressions of category C. They normally coincide
with the one word expressions in C, though in a few cases such as Pg
and Det, it may be that the syntactically simplest expressions are more
than one word long (e.g. John walks, and more ... than ...
respectively).
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2. LEXICAL FREEDOM

We shall first illustrate the concept of lexical freedom by arguing that the
category Py is lexically free and that the category NP is not lexically free.
Then we give the category independent definition of lexical freedom.

Extensionally we think of (first order) Py’s as being true or false of in-
dividuals. E.g. in a world (‘‘model”’) of six individuals I;, I, ..., Is it
might be the case that the P, walk slowly in the garden is interpreted in such
a way as to be true of, say, I;, I,, and [3 and Is (and fails of all the other
individuals'). And in such a case it is logically possible that the lexical P,
whistle is also true of just Iy, I, I3 and Is. That is, there is nothing about
the meaning of walk slowly in the garden which prevents it from being the
case that the individuals who are walking slowly in the garden are just those
who are whistling. This and similar examples show that complex P;’s form-
ed from PM’s (Predicate Modifiers) such as slowly and in the garden do not
associate truth' values with individuals in ways which are inherently
unavailable for lexical Py’s such as whistle.

Moreover, what holds for P, ’s formed with PM’s holds for all ways of
forming syntactically complex P;’s. That is, the various ways of building
syntactically complex P;’s do not lead to P;’s which are true of individuals
in ways which are in principle unavailable to lexical Pi’s. And this is what
we mean when we say that P, is lexically free. Any way of assigning truth
values to individuals which are available for complex P1’s is also available
for lexical Py’s.

To see that P; is in fact lexically free let us consider briefly the various
ways in which complex P;’s may be formed. Modification with PM’s has
already been considered. Another way of forming complex P1’s is by taking
boolean combinations in and, or and not (as well as but, neither ... nor,
and a few others). Again, there is nothing about the meaning of, say, walk
but not talk which prevents it from being the case that the individuals who
are walking but not talking are just those who are smiling. So whenever walk
but not talk is true of certain individuals it is logically possible that smile
is also true of just those individuals. Third, consider P;’s formed from P’s
plus NP arguments, as hug and kiss some student. Obviously it is logically
possible that the individuals who are both hugging and kissing some student
are just those who are standing, so the lexical P, stand can in principle be
interpreted in such a way as to be true of whatever individuals Aug and kiss
some student is true of. Fourth, consider P;’s formed by operations such
as Passive, Reflexive, and Unspecified Object Deletion, as in John was kiss-
ed, Mary admires herself, and Fred is reading. Obviously, no matter which
individuals were kissed, it is possible that just those individuals were s/eep-
ing, so the passive P was kissed does not in principle hold of individuals
which a lexical P; such as sleep could not hold of. Analogous claims hold
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for the Py’s admire oneself and read. As a last example consider P, ’s form-
ed from P2’s which take infinitival arguments, as in want/begin/try to read
this book. Again it obviously could be the case that whatever individuals
want to read this book are just the individuals who are humming, so such
Py’s do not associate truth values with individuals in ways which are
unavailable to lexical P,’s such as Aum.

We conclude then that the category P; in English is lexically free.
Moreover the informal arguments which support this claim are based on
judgments which seem sufficiently banal as to make us wonder just how a
category could really fail to be lexically free. There are however several such
cases, among them the category NP considered below.

The category NP is not lexically free. Many complex NP’s, such as every
Student, more students than teachers, etc. are built up from CN’s (student,
teacher), so just how such NP’s are semantically interpreted will depend in
part on how the CN’s they are formed from are interpreted. We may (stan-
dardly enough) think of CN’s as denoting properties of individuals, and we
regard two CN’s as extensionally distinct if, in some model, the individuals
which have the property denoted by one are not exactly the same as those
with the property denoted by the other. For example, doctor and fat lawyer
are extensionally distinct since we can easily imagine a state of affairs in
which the doctors and the fat lawyers are not exactly the same individuals.
Up to isomorphism then, we may think of a CN as (extensionally) denoting
a set of individuals.

Given this understanding of CN’s, we may (up to isomorphism) think of
full NP’s as denoting sets of properties, i.¢. sets of possible CN denotations.
On this view, a sentence such as Every doctor is a vegetarian is true if the
property denoted by vegetarian is an element of the set denoted by every
doctor, and false otherwise.

Now, to show that NP is not lexically free, we will show that there are
property sets denotable by complex NP’s which are in principle undenotable
by lexical NP’s. The lexical NP’s are largely just the proper nouns (John,
Mary) and the singular personal pronouns (ke, she).. We might also include
the demonstratives (¢this, that) as well as possessive deictics such as mine,
yours. Let us further include (though most linguists would treat them as syn-
tactically complex) the plural pronouns, such as we, they, these, ours.

Note that all these NP’s denote property sets which are increasing, which
we define as follows: A set K of properties is increasing iff for all properties
P, q, if p € K and every individual with p is also one with q, then q € K. An
NP is increasing if it always denotes an increasing set.

To check whether an NP is increasing (cf. Barwise & Cooper, 1981) check
that it satisfies the entailment paradigm given below when substituted for X:
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@8] Every doctor is a vegetarian
X is a doctor
Therefore, X is a vegetarian

The lexical NP’s noted above are all obviously increasing, and it is tempting
to conclude that all lexical NP’s are increasing. There is however another
class of NP’s which at least are phonological words and might be considered
by some to be syntactically simple. These are items often referred to in tradi-
tional grammars as ‘‘indefinite’” pronouns, e.g. all, none, someone,
everyone, noone. If we count these NP’s as lexical, we must note that none
and noone are not increasing. They are however decreasing, where a set K
of properties is decreasing iff for all properties p, q, if g € K and every p
isaqthenp € K. To check that X is a decreasing NP verify that the following
argument is valid:

3] Every doctor is a vegetarian
X is a vegetarian
Therefore, X is a doctor

A NP is called monotonic just in case it is either increasing or decreasing.
Clearly the candidates for lexical NP’s considered above are all monotonic,
and as these exhaust our candidates we conclude that all syntactically simple
NP’s in English denote monotonic sets of properties. (In fact, not all
monotonic sets can be denoted by these NP’s, but the condition as it stands
is sufficient for our purposes.)

Now to show that NP is not lexically free it is sufficient to find complex
NP’s which can denote non-monotonic sets. And in fact all major ways of
forming syntactically complex NP’s yield ones which may denote non-
monotonic sets. Some examples formed from Det’s plus CN’s are: exactly
one boy, between Sfive and ten boys, more male than female students, all but
one student, every student’s but not every teacher’s bicycle. Examples form-
ed from Det, and two CN’s are: more students than teachers, fewer students
than teachers, and exactly as many students as teachers. Finally, examples
formed by boolean combinations of NP’s include: John but not Mary, every
boy but not every girl, either fewer than five students or else more than a
hundred students. (We invite the reader to test e.g. exactly one boy in the
paradigms given in (1) and (2) to satisfy himself that this NP is neither in-
creasing nor decreasing.)

Since lexical NP’s in principle cannot denote non-monotonic sets we con-
clude that NP is not lexically free.

We may note however that if NPpp, the set of proper nouns (John,
Mary), can be distinguished on syntactic grounds as a (sub)-category, then
it is lexically free. Indeed, some would doubtless say that there are no syn-
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tactically complex proper nouns, in which case it is trivial that anything
which can be denoted by a complex proper noun can be denoted by a simple
one. There are however certain syntactically complex expressions which we
might consider to be proper nouns. For example, certain AP + proper noun
combinations, as Little John, Mighty Mo. Similarly Proper Noun + family
name expressions such as Joan Smith, Ebeneezer Cooke. Also Proper Noun
plus epithet constructions, as Eric the Red, Charles the Bald. But in all cases
these complex expressions denote individuals and so do not denote anything
which is undenotable by simple proper nouns. So NPy, if a syntactically
definable subcategory, is lexically free.

2.1 A general characrerization of lexical freedom

The arguments above that P, is lexically free and that NP is not are ones
based more or less directly on our judgments of entailment and logical
equivalence among English sentences. In assessing the lexical freedom of
other categories the arguments will have this same informal character, as
they do not depend crucially on adopting one or another semantic for-
malism. It is nonetheless important to see that our considerations can be
made formally precise. We sketch in this section one way of doing that. The
reader who is satisfied with the informal treatment of lexical freedom
already given may skip this section without loss of continuity.

The notion of lexical freedom basically compares the range of extensional
distinctions which can be expressed by the lexical items in a category with
the range expressible by the entire set of expressions in the category. Now
informally we have regarded two expressions of a given category C as exten-
sionally distinct if we can ultimately distinguish their meanings in terms of
the properties possessed by individuals, and more generally the relations
which individuals bear to one another. More formally, we shall measure the
range of extensional distinctions expressible by a category C by the sets in
which expressions of category C denote in an extensional model of our
language L. Exactly what sets these are depends on which individuals there
are. Given a set [ of individuals, we shall write Den; C for the set in which
expressions of category C denote. For example, given I, and chosing C to
be P;, we may think of Den; C as the set of functions from I into the set
{ T, F} of truth values. So a P; then will denote some function which
assigns T (= true) to some of the individuals in I and F (= false) to the
others. Similarly, chosing C to be P2 we may take Den;C to be the set of
functions from pairs of individuals in I into { T, F} . So two P;’s are exten-
sionally distinct just in case for some universe I of individuals, they assign
different truth values to at least one pair of elements of I. In general in what
follows we shall introduce the denotation sets Den;C on a category by
category basis.
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Here it is only important to note that the Den;C are defined strictly in
terms of the set I of individuals and the fixed set { T, F} of truth values.
Since I can be any (non-empty) set, we cannot give the range of extensional
distinctions expressible by, say, P in absolute terms. It depends on what
I is chosen, and can only be expressed as a function of I. We can of course
give this function precisely. If I is chosen with n (possibly infinite) members,
there will be 2" functions from [ into { T, F} . In section 3 we shall define
the relative ‘‘sizes’’ of categories in terms of how fast their denotation sets
grow as a function of the number of individuals in the universe.

Given a universe I of individuals there are typically many ways of assign-
ing elements of Den; C to expressions of category C. A specification of one
of these ways basically defines a model for our language. Formally, a mode/
Sfor L is a pair (I, m), where I is a non-empty set of individuals® and m is
a denotation function, called an interpretation of L relative to I, which
assigns to each expression d of category C some element of Den;C. The ac-
ceptable interpreting functions m are required to satisfy two types of condi-
tion. The first is Compositionality. Namely, the value of m at a syntactically
complex expression d is determined by the value of m at the syntactic parts
of d. So an interpreting function has no freedom in assigning denotations
to syntactically complex expressions. The second type of condition limits
the freedom in assigning denotations to lexical (= syntactically simple) ex-
pressions. In the first place, some expressions such as every, be, and true
are “‘logical constants’’ in the sense that given two models (I, m) and (I, m')
with the same universe, we require that m and m' assign the same values
to these expressions. E.g. given I, there is only one function from I x Iinto
{ T, F} whichis an acceptable denotation for be. Moreover, even for lexical
items which are not logical constants we find that an interpreting function
may not assign values with complete freedom: some expressions are con-
strained in their interpretation relative to the interpretation of others. For
example, if m(kill} is true of a pair of individuals (I, I) the m(die) must
assign T to 1.

Nonetheless, when all these conditions on acceptable interpreting func-
tions are given, it is still the case that many lexical items exhibit considerable
freedom in which elements of their denotation sets they may be interpreted
as (= denote). And in fact for any non-empty universe I, there is always
more than one interpretation of L relative to I. That is, there are at least two
models (I, m) and (I, m') with the same universe I but with different inter-
preting functions m and m’.

With these preliminaries, we may formally define lexical freedom as
follows (where ‘C’ in the definition ranges over the categories of expression
considered):
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Def 1: a. For all universes Iand all K € C,
DemK = {m(d): d € K & m is an interpretation of L
relative to I}
b. Cis lexically free iff for all universes I, DeniCiex = Den;C

Recall here that Cix is the set of syntactically simplest expressions of
category C. So trivially Ciex & C, whence Den;Ciex S Den:C, all 1. So to
show that a category C is not lexically free it is sufficient and necessary to
show that for some universe I of individuals, Den:C properly includes
DeniCiex. That is, for some universe I, there is something which can be
denoted by some expression in C but which cannot be denoted by any lexical
expression of C. Conversely, to show that C is lexically free we must show
that for all universes I, anything that can be denoted by an expression of
C can be denoted by a lexical expression of C.

Notice also a notational subtlety which actually raises an interesting
theoretical question (though not one we pursue here). Namely, given a
category C and a universe of individuals I, we write Den;C for some set in
which the expressions of category denote. Den; C is defined strictly in terms
of land [T, F}. Den;C however, defined in Def 1 above, in addition refers
to all ways m of interpreting expressions of category C. Trivially Den;C is
a subset of Den;C. We might like to require as an adequacy condition on
approaches to model theoretic semantics for natural language that the
reverse containment also hold. Why should we put elements in Den; C which
can never be the denotation of an expression of category C under any inter-
pretation of L? Nonetheless, several approaches, e.g. Montague (1973), do
not satisfy-the reverse inclusion. Further, while the definition of model in
Montague (1973) could be appropriately modified, it is not obvious that
there is a natural way to design the definition of the Den;C, all I and all C,
so that inclusion does obtain. It might happen for example that the natural
and normally very simple definitions guarantee the inclusion when 1 is finite
but leave some elements of Den; C inherently undenotable when I is infinite.
See K&M for some relevant discussion.

2.2 The distribution of lexically free categories
CLAIM 1: The categories in A. below are lexically free, those in B. are not

A. CN, CNy, Py, Py, P2, P3, NPpop, APabs, AP
B. NP, AP, Det,, Det;

We consider first Claim (1.A.). P, and NPpmp (if it is a category) have
already been argued to be lexically free. The arguments that P, and P are
L-free follow the same monotonous pattern as for Py, noting that in general
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the ways of forming complex Ps’s and P3’s are somewhat less productive
than the ways of forming complex P;’s. We should however make explicit
two restrictions we have been assuming on the class of P,’s we consider.
First, we only consider ‘“first order’’ predicates — ones which predicate of
individuals rather than sets of individuals or more complicated objects.
Thus we do not consider Py ’s such as love each other, be the two students
I know best, etc. which are most naturally thought of as predicating of sets
of individuals. Nor do we consider P,’s such as outnumber which relates
sets of individuals, not mere individuals. Further, this first order restriction
applies where appropriate to other categories. For example, among AP’s we
do not consider ones such as neighboring and parallel as in neighboring
villages, parallel lines, nor do we consider these CN’s, as they do not denote
properties of individuals but rather properties of sets of individuals.

Second, we limit ourselves to expressions which can be treated exten-
sionally. E.g. we do not consider P,’s such as seek and need, nor do we con-
sider AP’s such as skillful, fake, and apparent. (Note that skillful and many
other though not all, scalar AP’s are not extensional in the sense that if the
extensions of say doctor and lawyer are the same, i.e. the doctors and the
lawyers are the same individuals, it does not follow that the extensions of
skillful doctor and skillful lawyer are the same, i.e. the skillful doctors and
the skillful lawyers may still be different individuals. We refer the reader to
K&F (Keenan & Faltz, 1985) for a more thorough characterization of non-
extensional subcategories of the categories we consider here.

Turning to the other categories mentioned in Claim (1.A), we have that
Py is trivially L-free since clearly the simplest expressions of that category
may be either true or false, so all elements of Den;P, are denotable by
elements of (Po)iex.

The claim that CN is L-free is slightly more interesting. We have earlier
referred to CN denotations as properties (of individuals). Extensionally a
property may be thought of as a set of individuals (i.e. those which have the
property) and we may take, to use the formalism of the previous section,
Den;CN to be the power set of 1, the set of individuals of the model. Now
to show CN to be L-free we must show that any way of forming syntactically
complex CN’s does not result in CN’s which may denote properties in-
herently undenotable by lexical CN’s. The most productive way of forming
complex CN’s is by modification with AP’s, relative clauses, and PM’s. But
clearly, given any universe I of individuals, those who have the property ex-
pressed by tall and handsome doctor could be just those with the bachelor
property, so CN’s formed by AP modification do not take us outside the
set of properties denotable by lexical CN’s. Analogous claims hold for CN’s
such as doctor who Susan kissed and child on the Sfloor, so CN’s formed by
relative clause and PM modification do not lead to anything extensionally
new. Similarly, CN’s formed from CN;’s plus NP arguments, as friend
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of every senator, are also not extensionally new. Clearly the individuals who
are friends of every senator could be just the doctors. Finally, CN’s formed
by boolean combinations (not as productive as with many other categories)
are not extensionally new. It is logically possible that the individuals with
the property expressed by non-doctor and non-lawyer are just those with the
vegetarian property. As this appears to exhaust the ways of forming com-
plex CN’s we conclude that the category CN is lexically free.

Consider now the less well studied case of CNj ’s such as Jfriend (of). Ex-
tensionally we may think of them as denoting functions from individuals to
properties (CN denotations). E.g. semantically friend (of) associates with
each individuals J a property, friend of J. K&F investigate two ways of
forming complex CNj’s: boolean combinations and modification. It is at
least reasonable to consider that friend and colleague (of) is a complex CN;
formed by conjoining friend (of) with colleague fof). But it is clearly pos-
sible that for each individual J, the friends and colleagues of J are just the
brothers of J, so friend and colleague (of) does not denote a function in
principle undenotable by lexical CN;’s such as brother (of).

Concerning modified CN;’s, K&F suggest that the classical ambiguity in
old friend of the President may be represented by the scope of the modifier
old. On the analysis on which o/d combines with the CN Jfriend of the Presi-
dent it yields the property an individual has iff he is a friend of the President
and he is old. In the case of interest, it combines with the CN; Sfriend (of)
to yield the CN; o/d friend (of), which semantically maps each individual
J to the property an individual has iff he has been a friend of J for a long
time. But again there is no reason why, for each J, the old friends of J in
this sense could not be the brothers of J, so old friend (of) does not denote
any function which is undenotable by lexical CN,’s such as brother (of).
And as we can think of no further ways of forming complex CN;’s we con-
clude that CN; is a lexically free category.

The remaining categories listed in Claim (1.A) are adjectival and will be
considered under the more difficult but more interesting Claim (1.B), to
which we now turn.

NP has already been shown not to be lexically free. Consider Det (=
Det;). We may represent dets extensionally as functions from properties to
sets of properties. E.g. every will denote that function which associates with
each property p the set of those properties q common to all individuals with
p. Now, to show Det to be not L-free we must find some property of lexical
det denotations not shared by det denotations in general. (3) below, adapted
from K&S, is intended as an essentially exhaustive list of lexical dets:

3) every, each, all, both, neither, most, half (the), thesg, thep, a, some,
zero, one, . . ., twenty, no, several, a few, a score of, a dozen, finite-
ly many, infinitely many, many, few, this, these, them, my, his
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We have been generous (here and elsewhere) in counting certain expressions
in (3) as syntactically simple so as to not make our claim that Det is not L-
free depend on an unjustified choice of what we regard as syntactically sim-
ple. For similar reasons we have included several dets which cannot (see
K&S) be treated extensionally, such as many, few, and the demonstratives
(this, my). We may however think of occurrences of these expressions as be-
ing interpreted the same as various properly extensional dets. For example,
many on any given occurrence will denote something like more than n,
where n is some number determined by context. Similarly, in a given con-
text, an occurrence of this identifies an individual J and associates a proper-
ty p with J if J has p (otherwise it associates the empty set @ of properties
with p).

Now it is easy to see that most of the dets in (3) always denote increasing
functions, where a function f from properties to property sets is increasing
if its value at any property is an increasing set. However, no, neither, few
(extensionalized as above) and (just) finitely many denote decreasing and
not increasing functions.

It would appear then that like NP, lexical dets denote monotonic func-
tions. We believe this to be correct, as do Barwise & Cooper (1981).
However some (e.g. Thijsse, 1983) consider that bare numerals such as two
are to be interpreted in the sense of exactly two and not in these of af least
two, in which case they denote functions which are not monotonic. We
prefer the “‘at least’ sense: it is unnatural to think that a question such as
Are there two free seats in the front row? would be truly answered No in
a situation in which there were three free seats there.

However, even accepting that bare numerals have an “‘exactly n”’
reading, it is not difficult to show that Det is still not L-free. A general
observation which establishes this is that the non-increasing dets in (3) are
all “‘logical”’. That is, they are always interpreted by functions which are
automorphism (permutation) invariant (Al). Informally, to say that a func-
tion f from properties to sets of properties is Al is to say that in deciding
whether to put a property q in the set it associates with a property p, f ig-
nores which particular individuals with p have q. f may however be sensitive
to how many p’s have q and more generally to what proportion of the in-
dividuals with p have q. To appreciate the difference between Al and non-
Al dets consider the interpretative differences between (4a, b, c) below:

4 a. Some doctor is a vegetarian
b. Every doctor is a vegetarian
¢. John’s doctor is a vegetarian

Clearly the truth of (4a) and (4b) is determined once we have specified which
individuals are doctors and which are vegetarians. But that information is
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insufficient to determine the truth of (4c). For that we must in addition
specify which individual John is and which individuals he ““has’’. Thus the
function which interprets John’s makes a real world commitment as to
which individuals have which properties and which ones are related to which
others. So Johan’s, in distinction to some and every, is not Al. (A properly
general, i.e. category independent definition of Al is given in the Appendix.
See also Westerstahl (1984) for a slightly different treatment, one not in-
compatible with ours).

We may then consider that lexical dets are either increasing or Al. And
to show that Det is not L-free it is sufficient to find complex dets which are
neither. There are many such. One class is given by possessive dets such as
only John's, neither John’s nor Mary’s, no student’s, exactly two students’.
Another class is given by comparative AP dets such as more male than
Sfemale, fewer male than female, etc. Exception dets are another group:
every ... but John (as in Every student but John left early), no ... but
John, every ... but John’s, etc.

We conclude then that Det; is not lexically free. Analogous arguments
show that Det, is not L-free. The simplest det, ’s are ones like more . . . than
.. . and satisfy the very weak condition of being either Al or increasing. But
complex det’s such as more of John’s . .. than of Mary’s ... (as in More
of John’s dogs than of Mary’s cats) and more male . . . than Semale ... (as
in More male dogs than female cats) are neither Al nor even monotonic.

We consider finally the more complicated case of AP’s. Extensionally
AP’s may be represented by functions from (extensional) properties to (ex-
tensional) properties. K&F observe that extensional AP’s always denote
restricting functions, i.e. functions f such that all f(p)’s are p’s. E.g. all
female artists are artists, all tall doctors are doctors, etc. Within this class
there are two semantically distinct sorts of lexical AP’s: absolute ones and
_relative ones. We consider first the absolute AP’s (APaps). They are il-
lustrated by lexical AP’s such as male and female as well as by more complex
AP’s of the relative clause sort (who Sue kissed). To say that female is ab-
solute is to say e.g. that the female artists are just the artists who are female
individuals. Relative AP’s such as tall do not license this inference: A tall
artist need not be a tall individual (i.e. “‘absolutely”’ tall), he need only be
tall relative to artists. Note that two absolute AP’s are extensionally distinct
just in case their values at the property of being an individual are different.
Itis in fact easily seen (K&F) that the set of absolute functions is isomorphic
to the set of properties (the function h sending each absolute function f to
the value of f at the individual property being the isomorphism).

Given this correspondence between absolute AP’s and properties it is
perhaps unsurprising that syntactically they behave more like CN’s than do
properly relative AP’s. E.g. they combine more freely with dets to form
NP’s, as in The university hires more males than JSemales but *The university
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hires more talls than shorts. There may then be syntactic grounds for
distinguishing absolute AP’s from others, in which case we may observe
that the category APabs is lexically free. As the point has some independent
interest in what follows let us establish that fact.

There are several ways of forming complex absolute AP’s. For example,
relative clauses (formed on extensional positions) are absolute. E.g. a stu-
dent who Sue kissed is a student and an individual who Sue kissed. Similarly
(though often awkward to form) boolean combinations of absolute AP’s
are absolute. E.g. a non-male student is a student who is a non-male in-
dividual. Third, comparatives of relative AP’s with NP arguments are ab-
solute: A student taller than Bill® is a student who is an individual taller than
Bill. Equally, as Manfred Bierwisch (pc) pointed out to me, relative AP’s
combined with measure phrases such as five feet tall are absolute. A student
five feet tall is a student who is an individual five feet tall, not just five feet
tall relative to students but perhaps some other height relative to, say,
vegetarians. Finally, and important in what follows, AP’s formed from
AP/’s plus NP’s appear to be absolute. E.g. a student fond of Mary is a stu-
dent who is an individual fond of Mary. A student angry at every teacher
is a student who is an individual angry at every teacher. And since these
complex AP’s are absolute they do not denote functions inherently
undenotable by lexical absolute AP’s. I.e. it could be that for each p, the
p’s who Sue kissed are just the male p’s.

We conclude then that if APays is a grammatically definable subcategory
it is lexically free. But the full category AP itself is not lexically free. To see
this, consider that lexical relative AP’s are not interpreted as arbitrary
restricting functions. They must meet a variety of very strong conditions
(see e.g. Kamp, 1975, and Bartsch, 1975 for much discussion). One such
condition is exemplified in (5) below.

) Continuity Condition: if John and Bill are both doctors and also
both lawyers and John is a tall doctor but Bill is not, then it is not
the case that Bill is a tall lawyer and John not.

The antecedent of (5) guarantees that John is taller than Bill. If it were so
that Bill was a tall lawyer and John not, that would imply in addition that
Bill was taller than John, an obvious impossibility.

It appears then that lexical AP’s must denote restricting functions which
are either absolute or continuous as above. (In fact many additional condi-
tions must be satisfied by the lexical relative AP’s, but Continuity is suffi-
cient for our purposes here).

Now it is not difficult (but it is slightly tedious) to show that boolean com-
binations of relative AP’s need not satisfy Continuity. Consider e.g. neither
tall nor short. Let p be a property possessed by just the individuals Is, L,
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and I3 where I is k feet tall. It is clearly possible that Is would be the only
tall p, I5 the only short one, and Ly a neither tail nor short p. Now let q be
the property possessed by just I7, Is, and the individuals with p, where I;
is 7 feet tall, etc. It is surely plausible that the tall q’s are just I and Is, the
short q’s are just 14 and I3, and the neither tall nor short g’s are just Is. But
in such a case (more individuals can be added improving plausibility) Con-
tinuity fails. To see this, write f for the function denoted by neither tall nor
short. Then we have that both Is and Ly are p’s and also g’s. And L is an
f(p) and Is is not. But Is is an f(q) and L4 is not, so neither tall nor short
fails Continuity. .

We infer then that AP is not lexically free. But note, as Dick de Jongh
points out, that our argument relies crucially on the empirical claim that
English possesses no lexical AP blik with the meaning of neither tall nor
short. Might we not try such AP’s as average, or middling? But clearly an
average man is not synonymous with a neither tall nor short man. What is
needed here is a complex AP such as of average height. It appears then to
be a non-trivial fact concerning the expressive nature of English that it does
not lexically codify the middle range of scales determined by relative AP’s
such as fall and short. So we are claiming that blik above with the meaning
given is not a possible extension of English.

Finally, let us note, perhaps surprisingly, that AP, does appear to be lex-
ically free. Extensionally such expressions (fond (of}, etc.) denote functions
from individuals to AP denotations — in fact to absolute AP denotations.
And there appear to be several ways of forming complex AP;’s. Some com-
bine with intensifiers like very, as in very fond (of). But obviously it could
be that for each individual J, the property of being very fond of J was
possessed by just those individuals who were proud of J, so very JSfond (of)
does not extensionally denote a function in principle undenotable by a lex-
ical APy such as proud (of). Similarly boolean combinations do not lead to
extensionally new functions. It could be that, for each individual J, the in-
dividuals who are Jond but not envious of J are just those who are proud
of J. And finally, complex comparative forms such as much taller than,
twice as tall as are not extensionally new. It could be that for each individual
J, those who are twice as tall as J are just those who are fond of J.

We conclude then that AP is lexically free and thus that Claim 1 is
established.

3. EXPLAINING LEXICAL FREEDOM
We should like to know whether the fact that certain categories are L-free

and others are not is merely an accidental fact about English or whether
there is some principled basis for expecting just the distribution of L-
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freedom given in Claim 1. More specifically, does the property of being L-
free correlate with any other semantic property of the categories which
might be used to predict, or at least lead us to expect, that the L-free
categories are just those indicated?

We shall show here that L-freedom correlates with the ‘‘size’” of a
category, and moreover, that this property may plausibly be used as a basis
for explaining the distribution of L-freedom across categories.

Regarding ‘‘size’’, observe that in a model with n individuals, there are
2" extensionally distinct CN denotations, one for each set of individuals.
Similarly there are just 2" extensionally distinct P; denotations and 2® AP s
denotations. Further, the set of extensional P, denotations (as well as the
CN; and AP, denotations) corresponds to the sets of ordered pairs of in-
dividuals, whence there are 2n° such. Similarly there are 2n’ extensional Ps
denotations. These facts and others are summarized in the table below,
where we write n for the cardinality of the set | of individuals of the model
and, as before, DenC is the set of possible denotations of expressions of
category C in a model with universe I.

6) Lexically Free Categories C
Po NPpop P1 CN APahs CN; AP, P;
[Den;Cl 2 n 20 2n 20 20> 2n® 20’

By contrast consider the comparable figures for categories which are not
L-free:

N Lexically Restricted Categories C
NP AP Det; Dety
| Den; Cl 22" 2n.2°! 23" Rk +io

Justifying the figures in (7) is rather more difficult than for those in (6)
and raises one question of some theoretical interest.

Consider the figure given under the heading NP. In a model with n in-
dividuals (n may be infinite) there are 2° properties (sets of individuals) and
thus 22" sets of properties. But are all of these properties sets possible full
NP denotations? That is, given any property set, can one guarantee that
there is an English NP which may be interpreted as that set? The answer to
this question (and the comparable ones for the other categories above) is far
from obvious, and requires a serious study of the actual expressive power
of English. Several such questions are investigated in K&M and several par-
tial results are obtained, but equally several questions remain open. In the
case at hand, NP, we may infer that the answer is yes when n is finite. If
n is infinite it is unknown whether an arbitrary infinite property set is
denotable by an English NP under some acceptable interpretation.
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The positive answer for the finite case follows directly from a theorem in
K&S which gives a positive answer for Det; . Note first that Det,’s denote
functions from properties to sets of properties. The total number of such
functions is thus 22" raised to the power 2%, which computes out to 24",
However K&S argue on empirical grounds that not all of these functions are
needed as denotations for English Det; ’s. Rather we only need functions f
which satisfy the Conservativity condition given below:

8) f is conservative iff for all properties p, q,
p € f(q) iff (p A q) € f(q)

In effect the condition says e.g. that every doctor is a vegetarian iff every
doctor is both a doctor and a vegetarian, and moreover, the equivalence re-
mains true no matter what English Det; is substituted for every. We may
compute then (K&S, Thijsse 1983) that only 23" functions satisfy the Con-
servativity condition. But is this condition sufficient? That is, is every con-
servative function a possible Det; denotation, or may we impose still further
conditions? K&S show that for n finite no further conditions may be im-
posed. That is, given any conservative function f over a finite universe, K&S
provide a way of constructing an English Det; which may be interpreted as
f. This then justifies the figure given under Det; in (7), a point of some im-
portance in what follows.

It is now easy to see that the figure in (7) for NP is accurate. For the
nonce, write 1 for that property which all individuals have. So 1 is arguably
the denotation of the CN individual (or at least the complex CN object
which is either animate or inanimate). It is then easy to prove that for any
set Q of properties, the function fq which sends 1 to Q and all other proper-
ties to @, the empty set, is conservative. It follows then that d individuals
will denote Q, where d is the English Det, interpreted as fq whose existence
is guaranteed by the theorem in K&S.

The figure given for AP in (7) is empirically more problematic. That
figure is the number of restricting functions from properties to properties,
where, recall, such a function f is restricting iff for each property p, the in-
dividuals with f(p) are a subset of those with p. But as we have seen, lexical
AP’s are not freely interpreted in the set of restricting functions. Some, such
as male and female, may only be interpreted by absolute functions. Others,
the relative AP’s like ta/l, must meet the Continuity condition (5), and in
fact must meet somewhat stronger conditions. The issue then is whether we
have sufficiently rich ways of forming complex AP’s so as to allow us to
denote any restricting function (at least over a finite universe). Under one
plausible set of assumptions concerning these stronger conditions, which
space prevents us from presenting here, we may prove that any restricting
function may be built up as a finite boolean combination of ones meeting
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the stronger conditions. To this extent then the figure given in (7) under AP
is reasonable. But more work is needed to determine whether we might not
be able to impose even stronger conditions yet on the interpretations of lex-
ical AP’s.

Finally, the general figure given for Dety’s in (7) is simply the number of
k-place conservative functions given in K&M. We have no proof com-
parable to that in K&S for Det,’s that, even over a finite universe, any k-
place conservative function can actually be expressed in English. However,
for purposes of what follows, it is sufficient that the figure given for Det,
be at least as large as that given for Det; , and a quick perusal of K&M shows
that to be the case.

Consider now the significance of the figures in (6) compared with those
in (7). It is obvious that the denotation sets for L-restricted categories grow
much faster as a function of the size, n, of the universe than is the case for
L-free categories. For example, choosing n infinite, the denotation set for
any L-restricted category has size 22, which is strictly larger than that for
any L-free category, whose size is always < 2°. In fact, for all but the
smallest universes (n < 9) the denotation set for any L-restricted category
is strictly larger than that for any L-free category.

Let us define then a category C to be small if its denotation set always has
size < 2™, where f(n) is a polynomial function in n. And call C large if its
size is always 25, where g(n) is itself a non-trivial exponential function in
n. We then have the following generalization:

GEN 1: Small categories are lexically free, large ones are not*

Note that GEN-1 is simply an empirical generalization about English. It
has perhaps the status of a ‘“law” in (roughly) the sense of Werner’s Law
or Grimm’s Law — namely, an empirical regularity in the observed data.

It does however suggest an explanation for the distribution of lexical
freedom among our categories: Let us think of the relative sizes of the
denotation sets as a measure of the relative complexity in learning the mean-
ing of, and interpreting on an occasion of use, an arbitrary expression in the
category. Such a measure has some intuitive appeal. Correct application of
an arbitrary expression from a small category requires being able to dis-
criminate among many fewer states of affairs than for an arbitrary expres-
sion from a large category. E.g. assuming for the moment perfect
knowledge of the world, imagine that we are faced with the use of a new
vocabulary item, say, blik used as a Py, as in John bliks. To know whether
the statement is true or not we need merely be able to discriminate among
2" possible states of affairs, where n is the number of individuals in our rele-
vant universe of discourse. But if our interlocuter asserted Blik students are
vegetarians we should have to be able to discriminate among 23" possible
states of affairs (were the category Det; is not lexically restricted).
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Further, the learning and use problem can be expected to be greater for
lexical items in a category then for syntactically complex ones, since the in-
terpretation of complex expressions is (modulo idioms, etc.) determined as
a function of the interpretations of their syntactic parts. But for lexical items
there precisely are no syntactic parts, so the meanings of these elements must
be learned directly. Thus the problem of determining the meaning distinc-
tions among lexical expressions in a large category is reasonably considered
more difficult than that for small categories. It is then cognitively advan-
tageous in learning and using the meanings of expressions in large categories
if the learners and users can assume that the lexical expressions in those
categories do not denote freely in the set in which expressions in that
category in general denote, but rather they may only denote in a very limited
subset of that set.

While these considerations are admittedly speculative, they receive fur-
ther support from the fact that in general it appears that the set of possible
denotations we need for the set of lexical expressions of a large category is
itself small.

Consider first Detex, the set of lexical one place dets. Several of these dets
are deictic (¢his, these, my, your). That is, we understand that their reference
is given by the context in which they are used. Reasonably then the use prob-
lem here is minimal. Equally ‘‘pronominal’’ dets such as 4is, their have their
reference provided by the linguistic or non-linguistic context of use. Calling
all of these elements deictic, we see that the learning and use problem for
lexical dets largely reduces to that for the non-deictic items. Now most of
those iters are in fact logical constants. They are ““logical’’ in the sense that
they denote Al functions, and they are constant in that mostly there is only
one function from properties to property sets which they denote (in each
case). The learning and use problem then virtually reduces to that of learn-
ing the meanings of a handful of items — say 35 to be safe, and is not of
the order expressed by 23, the size of DenDet. However, certain lexical
dets such as several and « few appear not to be constant, though they still
denote Al functions. But even if they denoted freely in the AI set (which
they don’t — e.g. several is increasing), we may compute (K&S, Thijsse,
1983), that there are only 2®*V®*2/2 sych functions. Thus we may infer
that the denotation set for Detex is by our definition small.

Equally it is not hard to see that the set in which lexical NP’s denote is
small. Again excluding deictic items (this, that, I, we mine) and deictic/
anaphoric items (he, they) we observe that lexical NP’s are either proper
nouns, and so denote individuals, or else belong to a small finite set of essen-
tially logical constants (everyone, noone, someone, etc.). Basically then the
measure of the learning and use problem for lexical NP’s is given by n + ¢,
n the number of individuals and ¢ the number of lexical logical constants.
Note that even if further logical elements are found among NP and they
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could denote freely in the Al property sets, there are only 2*** such, so even
in this case we may infer from our definition that Den; NPy, is small. Thus
we suggest:

GEN 2: For C large, the set in which non-deictic lexical elements of C denote
is small

Note that Dety’s for k > 1 further support GEN-2. At best there are a
handful of logical constants (more ... than ...) among the {(non-deictic)
lexical Detz’s. So the magnitude of the learning problem here is given by
a constant c, ¢ the number of lexical det,’s. And even if further work reveal-
ed the existence of logical Dety’s freely interpreted in the AI set, the
number of such would still be technically small; 2 raised to the power

[Mzkr: I _Zj . {Thanks to Johan van Benthem for determining this
figure for us.)

There is one open problem concerning GEN-2 however, namely the size
of Dent APjex. To be sure the absolute AP’s denote in a set of size 2" so their
denotation set is small. But how many additional functions are needed to
provide denotations for lexical AP’s such as fa//? At the moment we do not
know.

4. A GENERALIZATION OF LEXICAL FREEDOM

The distinction we have drawn between L-free and L-restricted categories
is rather naturally seen as a special case of a more general distinction
(pointed out to us by Peter van Emde Boas). The basic idea behind lexical
freedom is that complex expressions in a category may extensionally denote
things which the simplest expressions of that category cannot denote.
Generalizing, given a category C, may we continually denote new things as
the complexity of expressions in C is increased, or rather is there a complexi-
ty bound beyond which new expressions will not let us denote anything that
could not already be denoted?

To formulate the question more precisely, let us represent the complexity
of an expression by its length, as measured by the number of lexical items
in it (which is reasonable, given the essentially context free grammar for our
expressions in K&F). Now, for C a category and k a positive integer, write
Cx for the set of expressions in C of length < k. And recall from Def 1 that
for a universe I of individuals, Den; Cy is the set of possible interpretations
of elements of Cy relative to the universe I. Then,

Def 2: k is an extensional bound for a category C iff for all sets I
of individuals and for all k' > k, Den;Cyx+ = Den;Cy
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If C has no extensional bound it will be called unbounded, otherwise it is
bounded, and the least such bound will be called the bound Sfor C.

Note that any L-free category is bounded; it’s bound is the length of the
syntactically simplest expressions in C (e.g. 1, if C has proper lexical expres-
sions). But if C is not L-free it does not follow that it is unbounded. So our
precise question becomes: Which L-restricted categories are unbounded?
Part of the answer is given by:

Thm 1: Det; is unbounded

The theorem follows as an easy corollary to the following two theorems
from K&S:

©)) The Finite Effability Theorem
For each conservative function f over a finite universe of individuals
there is an expression d in Det; which denotes f under some accep-
table interpretation of L.

(10)  The Finite Ineffability Theorem
For any finite subset D of Det; there is a finite universe I of in-
dividuals such that some conservative functions over I are
undenotable by any d in D.

(Note that in (9) we construct the determiner expression d once f is given;
in (10) we fix the determiner expressions D in advance.)

Thm 1 follows from (9) and (10) with the additional assumptions that
Detiex is finite, that there are only finitely many ways of forming complex
Dets, each one of which only introduces finitely many new expressions.
These latter assumptions are satisfied by any reasonable grammar of
English Dets. It then follows that for each positive integer k, (Det)y , the set
of Det;’s of length < k, is finite. So let k be arbitrary. Then by the Inef-
fability Theorem, there is a finite universe I for which there are conservative
functions undenotable by any element of (Det)x. But by the Effability
Theorem any of those functions is denotable, and thus denotable by a Det;
of length greater than k. Thus Deny(Det), is a proper subset of some
Deny(Det),,, for some k'’ greater then k, proving the theorem.

We might note that the basic reason that the Ineffability Theorem for
Det; holds is that the set of possible Det; denotations increases so much
more rapidly than the denotation sets for the lexical items occurring in a
Det;.E.g.letd = (di, . .., dk) be a single Det; of length k. An upper bound
on the set of possible denotations for d is given by the cross product for
those of the d; occurring in d. And as K&S show, this product, call it d(n),
is sufficiently small compared to 23", the number of possible Det; denota-
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tions in a world of n individuals, that the limit of d(n)/23" goes to zero as
n increases. And this implies that for sufficiently large finite n, d(n) is
smaller (in fact as much smaller as we like) than 23", Whence there are
possible Det; denotations which are not possible denotations for our fixed
d. The proof remains essentially unchanged when d is replaced by a finite
set D of Det;’s.

Further, though we lack a complete formal proof, it seems likely that NP
(=Deto) is also unbounded. As a first step towards showing that NP is un-
bounded, we note that we have a Finite Effability Theorem for NP. In fact
we have a stronger result:

Thm 4: For every finite universe I of individuals there is an interpreta-
tion m of L such that every element of Den; NP is denotable
under m. That is, there is a subset D of NP such that m[D] =
Den;NP.

The essential step in Thm 4 relies on the lemma below, also used in the
proof of Finite Effability for Det, .

Lemma There is a fixed subset D of NP such that for any countable set
K of individuals, m[D] = K, for some interpretation m of L.

We may choose D in the lemma to be {npx:k = 0}, where npy = Jokn and
Lpj+1 = the oldest friend of np;, all j. It is clearly possible, given a
denumerable sequence Iy, J, > ... of individuals, that J; is the oldest friend
of Jy, and that in general J;; is the oldest friend of J;.

As a consequence of the lemma, all of any finite number of properties are
denotable (under a fixed interpretation). To denote a property q for exam-
ple, construct the CN individual who is either np; or np; or . .., where the
finite disjunction of np’s is taken over those in D which denote just the in-
dividuals with q. Call this CN cng. Equally we may denote q' (the property
of being a non-q) by the CN individual who is not {[np; or np; or . ..], where
again the np;’s are just those denoting individuals with q. Call this CN non-
cng . Then the unit set {q} is the denotation of every cng and no non-cng.
Call this NP NP, . Then any finite set Q of properties is denoted by the finite
disjunction of the NP;’s for q in Q. And this gives us the Finite Effability
Theorem for NP (as well as CN).

The basic step remaining in the argument that NP is extensionally un-
bounded is to show that for any fixed d in NP, the number of possible ways
of interpreting d increases less rapidly than 22°, the total number of possible
NP denotations. If we can establish this point, then given any d in NP, we
can choose n large enough (but still finite) that some property sets are
undenotable by d under any acceptable interpretation. And what holds of
a single such d will extend as per the proof in K&S to any finite subset
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D of NP, yielding a Finite Ineffability Theorem for NP. Then the proof that
NP is unbounded follows exactly that for Det;.

The basic argument that finite ineffability holds for NP proceeds as
follows: We argue that for any finite set I of individuals and for any given
NP d, Denid, the set of possible interpretations for d, is small, that is, it
is of size 2@, where n is the cardinality of I and f(n) is a mere polynomial
function in n. (In fact a polynomial of degree < 3.) So let I and d be ar-
bitrary as above. Then d is representable as a concatenation of k lexical
items (d;, ..., dx), and an upper bound on | Den;d| is given by the product
of the | Den;d; | and is small if each | Denidi | is small, since a product of
numbers of the form 2/ is itself of the form 25™, for g(n) a polynomial
in n.

Now suppose first that none of the d;’s is of category AP. Then for each
di, either d; lies in a small category, in which case [ Denid; | is small, or d;
is a lexical NP or Dety, in which case again, as previously shown, | Den;d; |
issmall, or else d; is a logical constant (e.g. and, etc.) in which case | Dend; |
= 1 and so contributes nothing to Den;d. Thus | Denidl is small when d
contains no AP’s.

This argument does not go through however if some d; is an AP, since
we do not know how many functions are possible lexical AP denotations.
However by investigation (see the list of Dets in K&S and K&M) of the ways
in which AP’s may occur in NP’s we may conclude that, surprisingly
perhaps, AP’s contribute nothing to the total number of ways of (exten-
sionally) interpreting an NP,

To see this point, consider first an occurrence of an AP as a modifier, as
in every fall studen:. Though there are an unknown number of ways of inter-
preting tall, tall student occurs here as a CN and there are at most 2" ways
of interpreting a CN, whether lexical or complex. Since there is only one way
of interpreting every, there are at most 2 ways of interpreting every tall stu-
dent, just the same as the number of ways of interpreting every student.
Thus we may say that the AP #a/l does not occur essentially in every tall stu-
dent. That is, it contributes nothing to the set of possible ways of inter-
preting every tall student over and above what is inherent in every student.

Moreover, though the point is not completely obvious, we claim that all
occurrences of AP’s within NP’s are inessential in this sense.

Obviously enough, AP’s occurring within other modifiers, such as
relative clauses (student who is tall, student who is a tall carpenter) con-
tribute nothing to the total, since the relative clause is itseif a modifier and
thus the entire CN’s only admit of at most 2" possible interpretations.

Following however the generous syntax in K&S, we do find apparently
‘“free’” occurrences of AP’s within Dets, as exhibited in (11) below:

(11) a. Only the liberal but not the conservative (delegates voted for
Smith)
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b.  Neither the tall nor the short (students were chosen)

¢.  More tall than short (students passed the exam)

d. (John’s biggest) cows

€. (More of the liberal than of the conservative) (delegates .. .)

Here K&S consider that the AP has combined with the Det to form a com-
plex Det. These occurrences of AP’s do contribute (an unknown) degree of
freedom with regard to the range of possible interpretations for the Det’s
they form, but still contribute nothing to the range of possible full NP inter-
pretations, as can be seen by inspection of cases. Thus the NP’s in (11) ex-
hibit the same range of interpretations as their counterparts in (12) where
the AP’s do occur as modifiers.

(12) a. Onlythe liberal delegates but not the conservative delegates . . .
b. More tall students than short students . ..
¢.  The (biggest (cow which John has))

Clearly for example, Den;(12a) is small, being 2°.2" = 2%, since the only
freedom of interpretation is given by the two CN’s /iberal delegates and con-
servative delegates, 2" in each case, everything else being a logical constant.
Analogous claims hold for (12¢) and (12d).

We conclude then that the range of possible denotations for any NP over
a finite universe is small. And if D is a finite set of such NP’s its set of pos-
sible denotations is bounded by the product of its elements and is thus also
small. We may infer then that for n sufficiently large, 22°, the size of the
set of denotable property sets, is larger than the set of possible denotations
for any antecedently selected (finite) set D of NP’s. We conclude then that,
like Det, NP is an extensionally unbounded category. As we form increas-
ingly complex NP’s we may increasingly denote new sets of properties.

We are not however in a position to extend our argument and draw
similar conclusions for the remaining large categories, Det> and AP. As
regards Det, we lack a Finite Effability Theorem, and the one given for Det;
in K&S does not immediately extend. And as regards AP, we also lack a
Finite Effability Theorem, but we are optimistic that further research will
yield one. Den; AP is defined as the boolean closure of Den; APiex. Conse-
quently for I finite, if every element of Deny APjex can be denoted, then any
element of Den; AP can be denoted simply by forming finite boolean com-
binations of elements of APjex. But whether every element of Deny AP can
be denoted is an open question. We have after all only a fixed (finite)
number of lexical AP’s and these are not independently interpretable, e.g.
we cannot interpret short and ta/l independently. So chosing n greater than
the number of lexical AP’s would more than guarantee that the number of
restricting functions would exceed the number of lexical AP’s. However, we
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may well be able to form sufficiently many complex AP’s which are not
absolute. E.g. very tall, very very tall, ..., somewhat tall, etc. seem not to
be absolute. Whether these processes are sufficiently productive and permit
sufficient freedom as regards their interpretation to guarantee that all of
finitely many elements of Den;APex can be denoted (under a fixed inter-
pretation) awaits further research.

NOTES

1. Forsimplicity of presentation we shall treat Py’s and P, ’s in general as interpreted by total
functions rather than ones that are only defined on proper subsets of the set of individuals.
We do not think that generalizing predicate interpretations in this way will affect our results.
2. For convenience we present the set [ as a primitive of the model. On most approaches to
formal semantics I would not be a primitive. E.g. on most approaches we would take a non-
empty set E of entities as primitive. Then for each b in E we define Iy, or the individual
generated by b, to be the set of subsets of E which have b as an element (that is, the set of prin-
cipal ultrafilters over E). On the approach taken in Keenan & Faltz (1985) we take a complete
atomic algebra P as primitive (It is the set of possible CN denotations) and define the in-
dividuals as the filters generated by the atoms of P. These two approaches yield isomorphic
results and differences among them are irrelevant for our purposes here.

3. Tom Wasow (pc) points out that a student taller than Bill and a taller student than Bill
are not logically equivalent. The latter requires that Bill be a student and the former does not.
We may interpret taller . .. than Bill as a function whose value at a property p is the same as
that which interprets taller than Bill at p provided p is a property of Bill. Otherwise its value
at p is the zero property (that one which no individual has). Interpreted thus taller ... than
Bill would be a kind of “‘restricted”’ case of an absolute AP though not strictly absolute. Ad-
ding such functions to our set of possible AP denotations will not, we feel, alter the claims
made about AP’s in later sections. We do not however add them, as their distribution is so
restricted. E.g. it is unnatural to say every taller student than Bill, etc. We prefer an analysis
then on which a taller ... than Bill is thought of as a complex Det;, but do not pursue this
analysis here.

4. An alternative generalization here, more appealing perhaps to logicians, is:

GEN 1': First order categories are lexically free, higher order ones are not.

Certainly the denotation sets for L-free categories may be represented, up to isomorphism, as
relations (of various degrees) on the set [ of individuals of the model. Denotation sets for L-
restricted categories on the other hand are only representable as relations on the power set of
I. Taking this characterization of first vs. higher order, GEN 1’ seems supported. Moreover,
Johan van Benthem points out that, under a suitable characterization of “‘order”’, GEN 1 and
GEN 1’ are essentially equivalent.
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APPENDIX
A. The general definition of automorphism invariance (AD

Let h be a permulation of the universe I, (That is, h is a one to one function from [ onto itself )
Extend hto (T, F} by setting h(T) = T and h(F) = F. Call such a function a basic automor-
phism. Now extend h to an automorphism on all denotation sets as follows:

(D if h has been extended to a set A, then for each subset B of A, set
h(b) = {h(b): b € B}

(i) if h has been extended to each of A, Az, ..., A, extend h to their cross pro-
duct by setting h(ai, ..., ax) = (h(a)), ..., hiak)), all a; in A;.

As any denotation set is defined by taking power sets, subsets, or cross products. beginning
from I and {T, F}, h as extended is easily seen to be an automorphism of any denotation set
(when restricted to that set). Note we use h abusively for the basic automorphism as well as
its extension.

Now, an element f in any denotation set is automorphism invariant iff for all basic automor-
phism h, h(f) = f.

It is easily proven for the class of models we consider (K&S) that any expression e which
meets the condition that for all models (I, m) and (I, m ") m(e) = m’(e) always denotes an Al
element of its denotation set. The converse may fail, and does. E.g. several may denote dif-
ferently in different models with the same universe, but it always denotes an Al element of its
denotation set.
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